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Abstract-The theory is summarized for axisymmetric prebuckling and nonsymmetric bifurcation buckling of
ring-stiffened shells of revolution. The analysis is based on finite difference energy minimization in which
moderately large meridional rotations, elastic-plastic effects, and primary or secondary creep are included.
This theory is implemented in a computer program called BOSOR5, for the analysis of segmented and
branched ring-stiffened shells of revolution of multi-material construction.

Comparisons between test and theory are given for axisymmetric collapse and nonsymmetric bifurcation
buckling of 69 machined ring-stiffened aluminum cylinders submitted to external hydrostatic pressure.
Because most of the cylinders fail at an average stress which corresponds to the knee of the stress-strain
curve, the analytical predictions are not very sensitive to modeling particulars such as nodal point density or
boundary conditions. Agreement between test and theory is improved if the analytical model reflects the fact
that the shell and rings intersect over finite axial lengths.

NOTATION

A Pertains to cross-section area of ring
[Cl Matrix defined in eqn (5)

C, See eqn (5)

[D] [Dl = I :v' [~ ~]
E Young's modulus

Ey Tangent modulus
E Strain anywhere in shell wall or in the ring cross-section

H' H' = EEy/(E - Ey)
H Radial force/length, applied at ring centroid, positive outward (Fig. 2)
M Meridional moment about ring centroid, positive clockwise (Fig. 2)
M Number of degrees of freedom in the nonsymmetric bifurcation buckling analysis
n Number of circumferential waves in the buckling pattern
N Number of degrees of freedom in the axisymmetric prebuckling analysis

PI, p" p, Meridional, circumferential, normal tractions
q Nodal point degree of freedom
r Radius from axis of revolution to any point in shell wall or in ring cross-section

R 1> R, Normal meridional, circumferential radii of curvature
s Arc length along shell reference surface (Fig. 3)
S In-plane shear force/length acting along ring centroidal axis
u Meridional displacement of point on shell reference surface (Fig. 3)

u* Axial displacement of point on shell reference surface (Fig. 3)
U Strain energy

v, v* Circumferential displacement of point on shell reference surface
V Axial load/length applied to ring centroid (Fig. 2), or volume depending on context
w Normal outward displacement of point on shell reference surface (Fig. 3)

w* Radial displacement of point on shell reference surface (Fig. 3)
z Coordinate normal to shell wall reference surface
jI Poisson's ratio
</J Gradient of energy functional

(T, IT Stress, effective stress
o Circumferential coordinate
X Meridional rotation

Subscripts
b Infinitesimal buckling quantity
c Pertains to ring centroid
I Meridional
2 Circumferential
o Prebuckling quantity, or quantity as of last update

ith degree of freedom

tThis study was sponsored by the Lockheed Independent Research Program.
~Staff Scientist.
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r Pertains to ring
s Pertains to ring shear center
T Tangent modulus

DAVID BUSHNELL

Superscripts
b Infinitesimal buckling quantity
P Plastic
C Creep
T Thermal or transpose, depending on context

Symbols
[] Row vector
{} Column vector
[] Matrix

INTRODUCTION

In [1] and [2] the nonlinear prebuckling and bifurcation buckling analyses of elastic-plastic shells
of revolution are described. A computer program called BOSOR5 has been written [3] based on
the analyses in[l] and[2]. BOSOR5 also treats shells with elastic-plastic discrete ring stiffeners.
The purpose of this paper is to give a brief outline of the analysis including the discrete rings and
to present a comparison with test results on ring-stiffened cylinders obtained by Boichot and
Reynolds [4] in 1965. The details of the analysis of the discrete rings are given in Section 3 of Vol.
III of [3].

Previous work on elastic-plastic instability of ring-stiffened shells is apparently limited to
cylinders [5-9]. The most recent paper is by Lee [8], who used the Rayleigh-Ritz method.

The analysis here is based on energy minimization in which the displacement and rotation of
any ring cross-section are related to those of the shell reference surface at the ring attachment
point by simple expressions: plane sections of the ring cross-section are assumed to remain plane
as the ring deforms, with the planar rotations being identified as those along the axis of shear
centers of the ring.

BASIC EQUATIONS

The analysis is based on the principle of virtual work:

6U =f [lO - lOP - lO C
- lOT] [D]{6E}dV = 6W.

Volume

(I)

If the structure is composed of shells of revolution and rings, eqn (I) can be written in the
form

6U - 6W = Ie [1 i [lO - lOP - lO C
- lOT] [D] {6E} rdzds Shell strain energy

+L(lO, - lO,P - lO,c - lO/)E,6E, rdA Ring strain energy

-L[(P\6U + P2 6v + p,6w)- P3U\ + ~JW8W

(
U6U V6V) dp3 ]+ P3 If:+/i; +Cf": (u8w + w6u) rds External forces on shell

- (- V6u c + S6vc + H8wc + M6x )rc ] de. External forces on ring (2)

The nonlinear terms multiplied by P3 are taken from[lO] and represent the pressure-rotation
effect.

The total strains E in the shell can be expressed in terms of reference surface strains and
changes in curvature, and these reference surface quantities can then be expressed, through
appropriate finite difference expressions, in terms of the nodal point displacements qi shown in
Fig. 1. The Ui, Vi and Wi are meridional, circumferential and normal displacement components,
respectively. Moderately large prebuckling meridional rotations are permitted.
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Fig. 1. Locations of shell nodal point variables [q,] associated with displacement and rotation of a discrete

ring attachment point. The ring energy will ultimately be expressed in terms of these variables.

The ring theory is based on the assumption that plane sections of the ring remain plane, with
the origin for rotations of this plane being the shear center of the ring cross-section. The total
strain E, anywhere in the ring cross-section can thus be expressed in terms of displacement
components Us, Vs, Ws of the ring shear center and rotation X about the ring shear center. The
components Us, Vs , Ws and the components of ring centroidal displacements Uc, Vc, We shown in
Fig. 2, can be expressed in terms of the displacement components U *, v, w* of the
circumferential line on the shell reference surface to which the ring is considered to be attached
(Fig. 3). These components are easily written in terms of u, v, wand then expressed in terms of
the nodal point variables qi shown in Fig. 1.

The expressions used in the various transformations described above are given in[l] and[2]
for the shell and in [3] for the ring. In order to save space they will not be repeated here.

PREBUCKLING AN ALYSIS

For equilibrium

a(u - W) -_ .1,,' -_ J. [f fpC T { aE} d
'I' [E-E -E -E ][D] aq,. r zdsaq, • s z

J ( PC T aE, d+ E, - E, - E, - E, )E,-;;- r A
A uq,

f [( au av aw) ( 1 1) aw- Pl-+ P2-+ P3- - P3 -+- w-
s aqi aq. aq. R t R z aq.

+P3(..!!...~+-.E..~) +dp3 (u aw +W~)] rds
R I aq, R 2 aq. ds aqi aqi

- (_ ¢Ue+ saVe + awe+M aX)re]d8 = O.
aqi aq. aqi aq. (3)

}
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Fig. 2. Discrete ring variables and sign convention.
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Fig, 3. Ring location relative to shell wall.

where i = 1,2,3, ... N in which N is the total number of degrees of freedom in the prebuckling
analysis. In eqn (3) the plastic strains [E

P
] and E,P are each assumed to consist of two parts:

(4)

where [C] and C, are given by

{aii} [aii] [D]
[C]= aa aa

H' + [::] [D] {::}

(5)

The subscript ( )0 in eqns (4) denotes "value obtained when the material properties were last
updated." In eqn (3) the quantities [C], c" E/, E~o, Eo, E,o, EC, E,C, ET, E,T, [D], E, and the loads
and geometrical parameters are considered to be independent of the nodal point displacements qi.

Equation (3), then, represents a set of N nonlinear algebraic equations which are to be solved
by the Newton-Raphson method. For each Newton-Raphson iteration the simultaneous linear
equations

(6)

must be solved. The elements ao/i Iaqj in the "stiffness matrix" for each iteration have the form

ao/
i
= I. [f f ([E] [DT] {~}+ [~] [DT] {~}

aqj • s z aqiaqj aqj aqi

T P C T {a
2

E}) J (E (E~+aE,aE')+ [[Eo][C] - Eo - E - E ][D] aq"aq), rdzds + A T , 'aqiaqj iiqi iiqj

where

[DT ] == [I - [Cn [D]. (8)
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Solution strategy-a double-iteration loop

The prebuckling iteration strategy is as follows: At each load level or time step there are two
nested iteration loops. In the inner loop the set of simultaneous algebraic equations (6) with given
fixed material properties and plastic and creep strains is solved. This is the "Newton-Raphson
loop." In the outer loop the strain-dependent quantities [C], Cr, [e/], e~o, [ec], erc are
calculated. Double iterations at a given load level continue until the displacements no longer
change. In this way the favorable convergence property of the Newton-Raphson procedure is
preserved, equilibrium is satisfied within the degree of approximation inherent in a discrete
model, and the flow law of the material is satisfied at every point in the structure. A flow chart of
the algorithm used in BOSOR5 is given in Fig. 2 of[l]. Nonlinear collapse can be predicted with
the analysis just described.

Bifurcation buckling analysis
At a particular load equilibrium may be nonunique. Then there would exist a neighboring

solution q = qo +~q which is also in equilibrium, or

i = 1,2, ... M. (9)

The superscript b indicates "buckling modal quantities" and M is the total number of degrees of
freedom in the bifurcation buckling analysis. Equation (9) yields the buckled equilibrium state
{qo +~q }, since o/i (qo) = 0 represents an equilibrium state. Equation (9) is a linear homogeneous
set of equations and has a nontrivial solution only if the coefficient matrix [ao/i

b Iaq/] is singular.
Such singularities exist for certain values, the eigenvalues, of this stability matrix. Elements of
this matrix have the form:

(10)

in which Uo and Uro are the prebuckling stress distributions in the shell and ring, respectively and
a2 Wb Iaqibaq/ is given by the last part of the right-hand side of eqn (7) with appropriate
introduction of superscripts ( )b to denote buckling.

IMPLEMENTATION OF THE ANALYSIS IN THE BOSOR5
COMPUTER PROGRAM

Details such as the strain-displacement relations for shell and discrete rings are given in[I-3].
In the prebuckling analysis eqns (3)-(8) are specialized for axisymmetric deformations including
moderate rotations. The row and column vectors [e] and {e} and their derivatives with respect to
qi and qj contain two elements-the meridional and hoop strains; [D], [C), etc. are 2 x 2
matrices. Integration through the thickness of the shell is performed numerically with use of
Simpson's rule. Integration along the meridian amounts only to multiplication of the energy
density by the arc length denoted "L" in Fig. 1, and integration over (J is replaced by
multiplication by 277".

In the nonsymmetric bifurcation buckling analysis the row and column vectors reb] and {e b}
contain three elements-the meridional, hoop, and in-plane shear strains; [D], [C], etc. are 3 x 3
matrices.

In BOSOR5 each discrete ring is assumed to consist of an assemblage of K straight segments
of thickness Tk, length Lk, and orientation angle Ipk, k = 1, 2, ... K, as shown in Fig. 4. The
material of each segment may have a different stress-strain curve and different creep properties.
The temperature may vary along the length, L k , of the ring segments, but must be constant
through the thickness, Tk• The program user specifies the number of integration stations along the
length of each ring segment. The integrated ring properties are determined by Simpson's rule.

In the axisymmetric prebuckling analysis the plastic and creep circumferential strains are
determined for each point in the ring cross-section exactly as described in[l] for the shell. The
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Fig. 4. Discrete ring as modeled in the BOSOR5 computer program.

implementation of the discrete ring analysis was fairly easy because the plastic and creep flow
calculations for each ring segment are analogous to those for each layer through the thickness of
a multi-material shell wall. The major differences are that the ring material is considered to have
strength only in the circumferential direction and Poisson's ratio is assumed to be zero.

The buckling modal displacement components are assumed to vary around the circumference
as sin nO or cos nO with n or a range of n being supplied by the user as input data.

The strategy to determine a bifurcation buckling lead is as follows: The determinant of the
stability matrix [al/J bIaq b] is evaluated for a particular value of circumferential wave number
n = nsla<t for a sequence of load or time steps until it changes sign. Then n is varied, and an
eigenvalue problem of the type

([K I(PO, n)] +A(n) [K2(~P, n)]) {q(n)} = 0 (11)

is solved for each value of n in the range supplied by the user. [K I] is the stability matrix for the
structure as loaded by po, the applied load just before the change in sign of IK1(p, nsta't)l. [K 2] is
the "load-geometric" matrix, which depends on the load step Po to po +~p. The critical
circumferential wave number ncr corresponds to the minimum A(n). Certain safeguards are built
into the BOSOR5 computer program to avoid passing over closely spaced roots as the load is
increased. These are described in the program output.

COMPARISONS WITH TESTS

In 1965 Boichot and Reynolds [4] tested 69 integrally stiffened aluminium 7075-T6 cylinders
under external hydrostatic pressure. Photographs of some of the failed specimens are shown in
Fig. 5, which is taken from [4]. A schematic of the geometry of all the specimens is shown in Fig.
6, with the actual dimensions given in Table 1. The stress-strain data used in the analysis are listed
in Table 2.

Previous analyses applicable to some or all of these specimens have been performed by
Lunchick[5], Krenzke and Kiernan [6], Reynolds [7] and Lee[S]. All of the analyses agree
reasonably well with the test results, owing largely to the fact that the tangent modulus of the
material decreases by more than an order of magnitude within a 20% stress range of the 0·2%
yield stress.

Test results
Of the 69 test specimens, 24 have the designation"F", indicating the presence of fillets near
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Table 1. Test specimen dimensions and yield strengths

Compress i ve Yield
Model Lf

h d L
B

Strength
(0.2'/, Offset)

Dimensions in inches (See Fig. 6) psi

25-88 0.699 0.127 0.0830 0.386 4.473 80,600
25-86 0.679 0.107 0.0832 0.318 4.349 80,600
25-84 0.659 0.086 0.0830 0.255 4.216 80,700
25-82 0.632 0.059 0.0826 0.179 4.047 80,700
20-88 0.572 0.112 0.0830 0.340 3.647 80,700
20-86 0.555 0.097 0.0830 0.287 3·552 80,700
20-84 0.537 0.079 0.0830 0.230 3.430 81,400
20-82 0.511 0.054 0.0832 0.158 3.280 82,000
15-88 0.444 0.100 0.0830 0.297 2.843 82,700
15-86 0.428 0.084 0.0830 0.253 2.745 82,700
15-84 0.413 0.068 0.0830 0.202 2.638 83,000
15-82 0.390 0.046 0.0830 0.140 2.502 83,300
10-88 0.313 0.084 0.0833 0.248 2.002 83,500
10-86 0.300 0.071 0.0830 0.211 1.920 83,500
10-84 0.286 0.057 0.0830 0.167 1.830 83,400
10-82 0.269 0.039 0.0833 0.115 1.715 83,200
25-58 0.532 0.086 0.0513 0.254 3.405 83,000
25-56 0.520 0.074 0.0510 0.217 3.327 83,000
25-54 0.506 0.060 0.0513 0.174 3.239 83,200
25-52 0.487 0.042 0.0511 0.123 3.117 83,400
20-58 0.434 0.077 0.0513 0.232 2.778 83,600
20-56 0.424 0.067 0.0513 0.194 2.715 83,600
2Q..54 0.410 0.053 0.0511 0.159 2.624 83,400
20-52 0.394 0.037 0.0511 0.110 2.522 83,300
15-58 0.337 0.&59 0.05&5 0.201 2.157 83,200
15-56 0.326 0.058 0.0513 0.174 2.085 83,200
15-54 0.315 0.047 0.0513 0.138 2.017 83,400
15-52 0.300 0.032 0.0514 0.097 1.919 83,500
10-58 0.235 0.057 0.0515 0.169 1.5&5 83,700
10-56 0.226 0.048 0.0511 0.146 1.446 83,700
10-54 0.217 0.040 0.0516 0.114 1.389 83,800
10-52 0.205 0.027 0.0518 0.078 1.311 84,100
25-28 0·320 0.043 0.0200 0.123 2.049 78,400
25-26 0.314 0.036 0.0204 0.106 2.008 80,600
25-24 0.307 0.030 0.0202 0.086 1.~5 84,300
20-28 0.260 0.038 0.0203 0.111 1. 1 84,300
20-26 0.253 0.032 0.0204 0.096 1.626 84,400
20-24 0.248 0.026 0.0210 0.076 1.586 84,400
15-28 0.200 0.033 0.0201 0.099 1.280 84,000
15-26 0.196 0.029 0.0205 0.081 1.254 83,800
15-24 0.190 0.023 0.0206 0.066 1.216 83,500
10-28 0.140 0.028 0.0206 0.079 0.888 83,500
10-26 0.135 0.024 0.0205 0.068 0.863 83,500
10-24 0.130 0.019 0.0203 0.056 0.834 83,600
10-22 0.124 0.014 0.0203 0.039 0.793 83,600

15-58F 0,337 0.067 0.0511 0.200 2.157 82,000
15-56F 0.325 0.056 0.0507 0.174 2.087 82,000
15-54F 0.313 0.042 0.0512 0.134 2.018 82,000
15-52F 0.300 0.030 0.0510 0.097 1.921 82,000
10-58F 0.235 0.055 0.0515 0.169 1.507 82,000
10-56F 0.225 0.047 0.0517 0.145 1.446 82,500
10-54F 0.216 0.036 0.0510 0.109 1.390 82,900
10-52F 0.205 0.025 0.0509 0.079 1.315 83,400
25-28F 0.320 0.040 0.0209 0.122 2.048 83,400
25-26F 0.310 0.030 0.0209 0.105 2.010 82,800
25-24F 0.307 0.029 0.0200 0.086 1.967 82,300
25-22F 0.298 0.019 0.0205 0.060 1.910 81,700
20-28F 0.260 0.036 0.0193 0.112 1.665 81,700
20-26F 0.253 0.030 0.0193 0.097 1.626 81,300
20-24F 0.247 0.026 0.0199 0.077 1.588 80,800
20-22F 0.241 0.018 0.0197 0.054 1.538 80,400
15-28F 0.199 0.033 0.0207 0.097 1.278 80,400
15-26F 0.196 0.028 0.0204 0.081 1.255 81,100
15-24F 0.190 0.023 0.0208 0.067 1.217 81,700
15-22F 0.183 0.016 0.0203 0.049 1.173 82,400
10-28F 0.139 0.028 0.0213 0.079 0.889 82,400
10-26F 0.137 0.027 0.0202 0.068 0.861 82,300
10-24F 0.130 0.019 0.0199 0.057 0.832 82,300
10-22F 0.125 0.015 0.0200 0.039 0.795 82,200

the boundaries and where the rings join the shell wall as indicated in Fig. 6. From the photographs
in[4], it appears that practially all of the specimens without fillets fractured during failure. Figure
5 shows failure modes typical of the entire series of tests. One can see that there is considerably
more fracturing of the four cylinders shown in the top half of the figure than of those shown in the
bottom half. It is not possible to determine from the test data alone whether fracture caused the
failure or whether fracture occurred later as the shell was deforming in its buckling mode. On the
other hand, there is almost no evidence of fracture occurring in the case of the 24 specimens with
fillets. Therefore, it is reasonable to predict that better agreement between test and theory will be
obtained for the specimens with fillets than for those without. Furthermore, analytical predictions
that are too high for the specimens without fillets would lead one to favor the hypothesis that
failure was caused by fracture rather than buckling in these tests, since the analytical model is not
capable of predicting fracture. This would be particularly true if the too high predictions
correspond to the thicker specimens for which imperfections are less significant.

There are three differ~nt nominal radius/thickness ratios involved in the test series: R/h =: 12,
20, and 50. Buckling pressures for the R/t =: 50 specimens are probably somewhat sensitive to
imperfections because buckling, especially of the models in this class with small ring stiffeners,
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Fig. 5. Some of the buckled ring-stiffened aluminum cylinders tested under hydrostatic pressure by Boichot
and Reynolds [4]: Top specimens without fillets, with evidence of fracturing; bottom, specimens of similar

geometry but with fillets.

Table 2. Stress-strain relations

The following stress-strain data were used in the BOSOR5
analysis. These data points are derived from the formula

which ',.;as used by Lee

a 0 84
y

0.0

60.0

70.0

75.0

77.5

80.0

,34.0

85.0

90.0

95.0

100.0

0.0

.5714

.6998

.8461

.9921

1. ?t~l

l.673

5.910

15.810

0.0

.571Lf

.6893

.8041

.9111

1.088

1.666

L.907

4.300

11.060

0.0

.5714

.6845

.785'

.8748

1.O?O

,.;>63

1.lI8!.

1.676

3.577

3.923

:'3.32

0.0

.5714

.6808

.7705

.8463

·9662

1.164

1.342

1.496

3.011

7.256

18.67

0.0

.5714

.6779

.7589

.8241

.9241

1.086

l.;30

1.355

2.568

5.949

~5 .02

0.0

.5714

.6756

.7498

.8066

.8911

LG2)

1.143

1.?J+4

2 .220

1·.923

1;:' .16
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Fig. 6. Geometry of all 69 test specimens.
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occurs at average stresses that are barely in the plastic range. Indeed the test results for the
thinnest specimens exhibit the most scatter.

Some of the specimens in the test series buckled in an axisymmetric collapse mode and others
by nonaxisymmetric bifurcation buckling. The BOSOR5 code calculates either mode of failure,
whichever corresponds to the lowest pressure.

Determination of the Best Analytical Model
Figure 6 shows a schematic of the actual test specimen with rigid end plugs. Previous

analyses [7, 8] have assumed equally spaced rings and simple support at the interior faces of the
end plugs. In the present effort a preliminary parameter study on one of the test specimens was
made with BOSOR5 in order to determine the best analytical model prior to treatment of all 69
specimens.

Specimen 1O-52F was chosen as the standard of comparison because very good agreement
between test and theory is to be expected in this case for the following reasons:

1. The presence of fillets apparently eliminated the fracture mode of failure. From the
photograph in[4] of the buckled specimen, it is clear that the mode of failure was general
nonaxisymmetric instability.

2. The shell was quite thick (R It = 20), leading to small sensitivity to imperfections for
the following reasons: (i) The thicker shells buckled at average stresses well above the
proportional limit of the material. Since the tangent modulus of the material varies rapidly in the
stress region corresponding to the buckling pressure, the deleterious effect of imperfections is
"buffered" by the resulting increase in the tangent modulus at the lower level of average critical
stress for the imperfect shell. (ii) The effect of an imperfection is related to the amplitude of the
imperfection divided by the shell thickness. A given tolerance on out-of-roundness existed for all
69 specimens. Therefore the geometrical imperfections in the thicker shells reduce their buckling
pressures by smaller percentages than is the case for the thinnest shells.

3. For certain cases it is necessary to account for the fact that the ring thickness represents a
rather large percentage of the length of shell between rings. The cylinder is not as free to bend
meridionally in the region of the ring-shell intersection as it is elsewhere. Therefore, strictly
speaking, it is not correct to consider the discrete rings to be attached to the shell at a single point
and to be free to bend meridionally in the immediate neighborhood of this point. For Specimen
1O-52F, however, this ring thickness effect is small for two reasons: The ring thickness actually
was a rather small percentage of the ring spacing, and the failure mode was general instability for
which this ring thickness effect is very small.

Figure 7 is a schematic of Specimen 10--52F. Half of the shell is represented with symmetry
conditions being imposed at the symmetry plane. The rigid end plug is simulated by three rigid
supports which permit axial sliding in the prebuckling phase of the problem but which do not
permit normal deflection or meridional rotation. Nodal points are densely packed near the thick
Segment 1, where local axial bending strains are very high and changing steeply with axial
coordinate. The discrete rings are considered to be attached at single nodal points, labeled 16,25,
and 36 in Fig. 7.

Table 3 gives the results of a parameter study in which various modifications of this analytical
model were treated with use of BOSOR5. Critical pressure ranges are listed because it is known
only that the stability determinant changes sign between the values given.

Case 7 leads to a prediction within 1% of the critical pressure determined from the test. It was
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chosen as the most cost-effective model. Actually, in this particular case the 1% accuracy
probably would have been obtained with fewer nodal points since the critical pressure
corresponds to a general instability mode with one-half axial wave. However, for a given
specimen, it is not known a priori whether the critical mode corresponds to general instability or
to local buckling between adjacent ring stiffeners. Therefore, it is necessary to include enough
nodal points to permit prediction of the local instability mode with reasonable accuracy. For
accurate prediction of stability it is not necessary to concentrate nodal points so densely near the
support. However, one must so concentrate them in order to predict accurately the high
prebuckling meridional bending strains there.

Figure 8 shows the predicted prebuckling effective strains with and without the fillet at the
edge ring. The "Dense Mesh" is that shown in Fig. 7 and the "Sparse Mesh" is that described as
Case 6 of Table 3. While the predicted prebuckling strains near the boundary are very different
for the models with and without fillets, the effect of this difference is very small on the predicted
general instability pressure, as seen from Table 3. One might expect this lack of sensitivity
because the buckling mode involves only small deflections in the edge region. Similarly, the
presence of the edge fillet would not be expected to affect predicted local instability which
initiates in the central bays of the cylinders, not near the edges.

Notice that the predicted effective strains in the model without the fillet are indeed in the
range where fracture might occur before buckling. In many of the specimens the maximum
predicted effective strain at the edge was over 15% at the predicted critical pressures. The
maximum strain component is compressive meridional. Because shell theory (normals remain
normal, etc) is used here and because the strains vary so steeply near the edge, the predictions of
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Fig. 8. Effective strain near edge for Specimen IQ.-52F at 5000 psi analyzed with and without edge fillet.

Table 3. Parameter study of specimen IQ.-52F to determine the best analytical model of all specimens

CASE ANALYTICAL MODEL BOUNDARY CONDITIONS USED IN THE
STABILITY ANALYSIS TO SIMULATE

THE END PLUG
(Prebuckling boundary conditions
were the same -for all cases)

PREDICTED
CRITICAL PRESSURE
RANGE IN PSI
(OIRC. WAVENUMBER)

As shown in Figure 7. Axial eu) and circumferential (v) sliding
permitted, normal deflection (w) and
meridional rotation (X) restrained

5060-5080(4)

As shawn in Figure 7,
except rings treated as
flexible shell branches

Same as Case 1 5060-5080(4 )

As shown in Figure 7,
except rings "smeared"
as described in [91

Same as Case 1 5060-5080( 4)

As shown in Figure 7, ex
cept variable thickness
near support simulating
the fillet shown in
Figure 4.

Same as Case 1 5080-5100( 4)

Same as Case 4, except
boundary condiHans

Clamped at end plug (u,v,w,X '" 0) 5140-5160(5)

6 As sh~wn in Figure 7, ex- Clamped at end plug
cept nodal points not
concentrated at beginning
of Seg. 2. Pight equa.l
intervals between end plug
and discrete ring #1, each
0.1 ~ long.

5140-5160( 5)

Segment? only, with nodal Clamped at end plug
point distribution as in
Case 1

Critical test pressure for this specimen W3,S 5099 psi

the prebuckled state in the edge region are doubtless not very accurate. Shell theory is just not
sufficient to calculate details of the actual local edge deformations which must involve
considerable transverse shearing. Thus, the present analysis does not lead to a definite conclusion
that in the tests of the specimens without fillets fracture preceded buckling_ However, because of
the high strains obtained in this analysis, our belief is reinforced that many of the specimens did
indeed fail by fracturing and not by buckling.
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Comparison with all the tests
Tables 4 and 5 and Fig. 9 give the test pressures and BOSOR5 predictions with use of the

analytical model identified as Case 7 in Table 3. Each of the 69 examples involves approximately
90 degrees of freedom in the prebuckling analysis and 130 degrees of freedom in the stability
analysis. About three minutes of UNIVAC 1110 computer time were required for execution of

Table 4. Comparison of test & theory for buckling of models without fillets

Model Observed Adjusted BOSOR5 Adjusted Buckling Mode b/.JRt
Buckling Pressure Prediction BOSOR5 (No. of
Pressure eire .Waves)

(psi) (psi) (psi)

25-88 9450 9875 9170 l.077 0 .431
25-86 9550 9980 9310 l.072 0 .363
25-84 8850 9237 9400 0.')83 0 .293
25-82 7275 7593 81+00 0.904 3 .200

20-88 10500 11052 10080 l.0')8 .380
20-86 9750 10176 10240 0.994 .329
20-84 8800 9105 9900 0.920 .269
20-82 7400 7696 8490 0.905 .184

15-88 11600 12105 11760 1.029 0 .340
15-86 10000 10435 11280 0·925 3 .286
15-84 9100 9462 10080 0.939 3 .231
15-82 7650 7926 8660 0.915 I, .156

10-88 12100 12658 13000 0.974 0
10-86 10550 11140 11500 0.969 3
10-84 9150 9468 10120 0.935 4 .193
10-82 7650 7937 8750 0.907 I, .133

25-58 5600 5740 5725 l.003
25-56 5600 5739 5750 0.998
25-54 5550 5678 5820 0.976
25-52 1.1.470 4559 ';200 0.877

20-58 6300 6488 6375 l.017 .335
20-56 6300 6488 6440 l.007 .292
20-54 5450 5559 6150 0.904 .231
20-52 4500 4595 )260 0.874 .161

15-58 7080 l.018 .300
15-56 6950 0.942
15-54 5500 6240 0.899
15-52 4600 53::'0 0.891

10-58 7458 7875 0.947 .248
10-56 6634 7030 0.937 .209
10-54 5779 6280 4' .17l.\.
10-52 lj.3l? 5340 5 .118

1850 1868 0.973 0

1960 1990 0.956 0
25-24 l880 1892 ?l?O 0.893 0 .?07

0.957 .261,
0.908
0.884

15-28 24;;4 0·925 .229
15-?6 ?389 .?02
15-24 2093 5a .160

2666 2.300 0.952 .194
2398 ~5°0 O.9?5 .167

10<\1..j. 2040 2070 0'340 0.885 .132
1O-2? 1640 1664 1920 0.867 .097

aBuckling mode is antisymmetric at SymI"letTY plane.

Table 5. Comparison of test & theory for buckling of models with fillets

Model Observed Adjusted BOSOR5 Adjusted Buckl ing Mode br/Rt
Buckl.ing Pressure Prediction BOSOR5 (No. of'
Pressure Cire.Waves)

(psi) (psi) (psi)

1558F 7400 7584 7050 l.074 .292
1556F 6750 6917 6800 l.017 .244
1554F 5850 5999 5920 l.013 .183
1552F 4920 5042 5140 0.')81 .131

1058F 7700 7897 7620 l.036 0 .240
1056F 6800 7013 6940 l.01l 4 .205
1054F 5950 6105 5940 l.028 4 .157
1052F 5000 5099 5140 0.992 5 .109

2528F 2160 2172 2160 l.OO5 0 .278
2526F 2080 2105 2180 0.966 0 .209
2524F 1935 1947 2050 0.945 0 .200
2522F 1420 1439 1600 0.900 4 .133

2028F 2135 2164 2260 0.957 .249
2026F 2100 2113 2140 0.')87 .207
2024F 2060 2086 2180 0·957 .180
2022F 1520 1527 1700 0.893 .126

1528F 2580 2605 2620 0·995 0 .230
1526F 2400 2421 2460 0.')84 0 .195
1524F 2180 2210 2250 0.982 5a .160
1522F 1720 1729 1840 0·939 5 .111

1028F 2840 2854 2680 l.oS5 0 .194
l026F 2540 2556 2560 0.998 0 .188
1024F 2180 2194 2280 0.962 5 .132
1022F 1775 1788 1880 0.951 6 .104

aBuckling mode in antisymmetric at the symmetry plane.
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Fig. 9. Comparison of test and theory with use of analytical model identified as Case 7 in Table 3, plotted as
function of ring thickness parameter, bh/(Rt).

each case. The lowest buckling pressure corresponds to a buckling mode which is symmetric
about the symmetry plane in all except two cases-Specimens 15-24 and 15-24F. In these two
cases the critical mode is antisymmetric about the symmetry plane. The buckling pressures
corresponding to a buckling mode which is symmetrical about the symmetry plane are very
slightly higher-2360 psi for Specimen 15-24 and 2260 psi for Specimen 15-24F.

In Tables 4 and 5 the adjusted pressure is approximately the observed pressure, which acts on
the outer surface of the shell, multiplied by the ratio of the outer surface radius to the middle
surface radius. Another factor, slightly different from unity, is applied to adjust for the differences
between the observed yield stresses listed in Table I and the rounded values of yield stress used
to generate the stress-strain data given in Table 2. A buckling mode with zero circumferential
waves indicates that the predicted failure is due to axisymmetric collapse rather than bifurcation
buckling. The analysis predicts that more of the cylinders failed in this mode than the
photographs of [4] seem to indicate. There are two probable reasons for this discrepancy between
theory and test:

1. In many cases the axisymmetric and nonaxisymmetric modes of failure occur at almost the
same pressure. A slight imperfection, while not much affecting the critical pressure, might easily
cause a nonaxisymmetric buckling pattern to develop during the post-buckling process. In the
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photograph of[4] are seen the far post-buckled states of the specimens, not the initial buckling
modes.

2. The analytical model used to generate the predictions in Tables 4 and 5 underestimates the
axisymmetric collapse mode of failure because the discrete rings are considered to be attached to
the shell at single meridional points with the shell being free to bend axially within the thickness b
of each ring. This effect is particularly important for the specimens with larger values of
b /V(Rt). It will be evaluated quantitatively in the following section.

Figure 9 shows the tabulated results plotted versus the ring thickness ratio b /V(Rt). The
three frames correspond to the three nominal R/t values, R/t == 12 in the top frame, 20 in the
middle frame and 50 in the bottom frame. Each point corresponds to a single test specimen. The
points designated "Fillet" are from Table 5.

The generally upward sloping trend results primarily from the fact that the analytical model
becomes increasingly conservative with increasing b/V(Rt): The neglected effect on the shell
meridional bending stiffness of the finite thicknesses of the rings leads to a prediction of
axisymmetric collapse with relatively short axial wavelengths. Actually, this mode is hindered by
the increased local meridional bending stiffness afforded by the finite axial intersection lengths of
shell and rings.

There is a greater degree of scatter apparent in the case of the thinnest specimens, which are
somewhat susceptible to the presence of initial imperfections.

Table 6 gives comparisons with analyses by Reynolds [7] and Lee [8] for all the specimens for
which analytical results are available from [7] and [8]. The BOSOR5 results are higher than those
obtained by Lee and Reynolds. The reasons for the discrepancy are not known at present.

Analysis of the ring thickness effect
With use of BOSOR5, it is possible to investigate analytically the effect on predicted critical

pressures of including some additional axial bending stiffness due to the finite axial length of the
shell-ring intersection areas. This increase in axial bending rigidity is modeled as shown in Fig. 10.
Additional mesh points are provided in the neighborhoods of the discrete rings with meridional
rotation constrained to be equal at nodal points corresponding to the bottom and top surfaces of
each discrete ring. The solid line, labeled Model 1, corresponds to the original analytical models
of the test series 15-5XF in which the discrete ring is considered to be attached at one point and
the shell is free to bend under the ring. That is, the prebuckling meridional rotation X is free to
change along the shell wall within the shell-ring intersection area. With the extra constraint
conditions (Model 2) the analytical predictions are closer to the test results. The critical failure
mode for the specimen with the thickest rings, Specimen 15-58F for which b /V(Rt) == O· 3, is
predicted to be axisymmetric inter-ring collapse with use of Model 1 and nonsymmetric general
instability with use of Model 2. In the cases for which general nonaxisymmetric instability is
predicted with use of Model 1, introduction of extra constraint conditions as depicted in Fig. 10
does not change the prediction very much. Analytical results for all of the cases investigated with

Table 6. Comparison with other analyses

Model Ptest(Adjusted) PBOSOR~n)a I ) b
PREYNOLDS ( n) CPLEE\n

10-52 4812 5340( 5) 46700) 4779 (5)

10-54 5779 6280(4) 5915(3) 5270(4)

10-82 7937 8750(4) 7521(2) 7786(4)

10-88 12658 13000(0) 10440( 5) 115030)

15-82 7926 8660(4) 7647(2) 7663(3)

15-84 9462 100800) 8331(9) 8654(3 )

15-88 12105 11760(0) 10987( 4) 11166(3 )

20-82 7696 8490( 3) 7687(2) 7556(3)

20.84 9105 99000) 8131(7) 8390(3)

number of circumferential waves in buckling mode.

Reference [8 ]

c Reference [7J
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Fig. 10. Comparison of test and theory for Specimens 15-5XF neglecting and including ring thickness effect.

use of Model 2 are given in Table 7. Unfortunately, the budget for computer time did not permit
analysis of the entire series of tests with use of Model 2.

Figure 11 shows the predicted axisymmetric failure modes for Specimen 25-88 with use of
Model 1and Model 2 analysis. It is clear from these plots why introduction of the extra constraint
conditions raises the axisymmetric collapse load.

Conclusions
In general the test results and analytical results are in reasonably good agreement. Because of

the shape of the stress-strain curve, one would not expect most of the specimens to be sensitive
to imperfections. Nor would one expect much sensitivity of the predicted critical pressures to
changes in the analytical model such as nodal point density, boundary conditions, and treatment
of ring stiffness.

It appears from the results obtained in this study that most or all of the test specimens without
fillets failed by fracturing rather than by buckling. However, shell theory cannot predict
accurately the local strain concentrations at the rings or at the edges. A more elaborate analysis
of these areas, perhaps a modeling of them by means of two-dimensional grids of axisymmetric
finite elements, will have to be made if this problem is to be solved with more certainty.

The results indicate that the buckling pressures of the thinnest shells (R / t = 50) are somewhat
sensitive to imperfections, mainly because there is little plastic flow prior to buckling. If one
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Fig. II. Predicted axisymmetric collapse modes of Specimen 25-88: (a) Specimen geometry, (b) neglecting
ring thickness effect, (c) including ring thickness effect.
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restricts one's attention only to those specimens which definitely did not fracture and which are
not sensitive to imperfections, then the agreement between test and theory is very good.
However, only eight of the 69 specimens fall into this class-the four designated 10-5XF and the
four designated 15-5XF. From Table 7 it is seen that the maximum discrepancy between test and
theory for those specimens is 3·6% if the ring thickness effect is included in the analytical model.

Table 7. Comparison of two analytical models with test results

ADJUSTED TEST TEST
SPECIMEN b//l!t TEST PRESSURE MODEL 1 MODEL 2

(psi)

25-88 .431 9875 1.077(0) 0.946(0)
25-86 ·363 9980 1.072(0) 0·975(0)
25-84 .293 9237 0.983(0) 0.944(2)
25-82 .200 7593 0.904(3) 0.908(3)

15-58F .292 7584 1.074(0) 1.003(3)
15-56F .244 6917 1.017(3) 1.005(3)
15-54F .183 5999 1.013(4) 1.013(4)
15-52F .131 5042 0.981(4) 0.985(4)

10-58F .240 7987 1.036(0) 1.036(3)
1O-56F .205 7013 1.011(4 ) 1.011(4)
10-54F .157 6105 1.028(4) 1.028(4)
10-52F .109 5099 0.992(5) 0.992(5)

10-28F .194 2854 1.065(0) 0.998(Ol
10-26F .188 2556 0.998(0) 0.975(0
10-24F .132 2194 0.962(5) 0.979(6)
10-22F .104 n88 0.951(6) 0.944(6)
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